\begin{tabbing} FIFO\=\{i:l\}\+ \\[0ex](${\it es}$) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=$C$:Type\{i\}\+ \\[0ex]$\times$ ($T$:Type\{i\} \\[0ex]$\times$ $S$:($C$$\rightarrow$$C$$\rightarrow$es{-}E(${\it es}$)$\rightarrow\mathbb{P}$\{i\}) \\[0ex]$\times$ $R$:($C$$\rightarrow$es{-}E(${\it es}$)$\rightarrow\mathbb{P}$\{i\}) \\[0ex]$\times$ ${\it codes}$:($j$:$C$$\rightarrow$$i$:$C$$\rightarrow$$e$:\{$x$:es{-}E(${\it es}$)$\mid$ $S$($j$,$i$,$x$)\} $\rightarrow$es{-}state(${\it es}$;es{-}loc(${\it es}$; $e$))$\rightarrow$$T$) \\[0ex]$\times$ (${\it decodes}$:($i$:$C$$\rightarrow$$e$:\{$x$:es{-}E(${\it es}$)$\mid$ $R$($i$,$x$)\} $\rightarrow$es{-}state(${\it es}$;es{-}loc(${\it es}$; $e$))$\rightarrow$$T$) \\[0ex]$\times$ fifo(${\it es}$;${\it codes}$;${\it decodes}$;$C$;$S$;$R$;$T$))) \- \end{tabbing}